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Abstract

Innate Immune Modeling Using DBN

Seralogix is developing new computational tools and methods for the identification, analysis, and modeling 
of the mechanisms and pathways associated with the host-pathogen innate immune and inflammatory 
responses to infectious diseases - including biowarfare agents. Our core computational tool is based on the 
statistical power of dynamic Bayesian networks (DBNs), which is utilized to learn and model the complex 
dynamic pattern-of-change of DNA, mRNA, proteins and metabolites, which we refer to as the “temporal 
biosignature” of the host-pathogen response.  DBNs are based on sound probabilistic methods that allow us 
to combine prior knowledge with time-course empirical data for deciphering host-pathogen biosignatures 
with a biological system perspective. Because 
of the complex multi-dimensional data resulting from genomic 
and proteomic investigations, new computational tools, with 
built in intelligence, are required to serve the investigative
needs of the 21st century. 

We represent the innate immune and inflammatory response and their underlying mechanisms and 
pathways as a Dynamic Bayesian Networks (DBN)1. We have prototyped DBN models from prior knowledge 
and synthesized time-course data for both bacterial and viral type innate immune and inflammatory 
responses.  We capture and visualize prior known causal relationships by using graphical modeling 
techniques, resulting in a directed acyclic graph (DAG) as illustrated in Figure 1.  Here, we have assumed a 
simple pathogen-host immune response model and empirical data as shown on the (Fig 1(a))  that 
translates to the static Bayesian network DAG structure (Fig 1(b)).  The gene/protein biomarkers and other 
information are the random variables. The yellow shaded nodes in our DAG are the observed/measured 
biomarker nodes. The yellow nodes represent measured gene/protein expression levels and physiologic 
factors.  The white nodes are hidden variables used to capture certain simplification assumptions and other 
unmeasured model influences.  These nodes accumulate the influences of hidden processes such as 
genetic translation pathways, individual cellular protein secretions, body protein clearance and 
measurement variability.   The arcs in the model represent causal relationships.

Figure 1. The translation from prior biological knowledge and structure learning from gene/protein expression data 
(a) to a directed acyclic graph (DAG).  The DAG represents a simplification of our work and shows the static 
Bayesian network model (b) rolled out for only three time-points as the dynamic Bayesian network (c).  The DBN 
model parameters are learned from empirical data as well as from prior data.  Different DAGs will be required to 
model host-pathogen responses because of the differences in the pathogen invasion and evasion mechanisms.

Results
We are in the early stage of software development and have 
only preliminary data to report.  Our initial focus has been on 
validating our computational approach for learning the correct 
dynamic Bayesian network model from synthesized training data
that was generated from a process with known causal relation-
ships.  We developed nine different sets of training data 
representing  different pathogens with only subtle changes in the 
simulated mRNA/protein host-pathogen response data.   Each dataset creates a DBN with its own unique 
parameters resulting in very accurate representation of the underlying empirical data.  Table 1 shows the results of 
our initial evaluation where the majority of the training cases resulted in close to 100% accuracy.  We intentionally 
induce strong non-linearities in the datasets for  Glanders and Lassa pathogens which lowered our model 
representation accuracy.  We can correct for non-linearity by using other probability distribution functions within our 
learning algorithm.  We developed our existing models reported herein using Gaussian distributions. 

Conclusion
We believe that our tools in conjunction with emerging, quantitative genomic and proteomic array technologies will be 
essential in supporting new in vitro and in vivo investigations that combine time, system level analysis, and prior signaling 
pathway knowledge to support:

new drug and vaccine developments; and 
new pre-symptomatic diagnostics and therapeutic management approaches important for 21st century healthcare  
and the realization of personalized medicine. 
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Deciphering Host-Pathogen Mechanism
Understanding the mechanisms of the immune and inflammatory response is one of the most important 
problems in contemporary biology. Extensive studies by the researchers on this project and others have 
been done both experimentally as well as by modeling to understand the immune response system.  
However, typically only limited portions (sub-components) of the immune system have been studied, 
leaving major gaps in our understanding of the fuller system behavior and time-course of the host-
pathogen response, mostly due to lack of technology and computational tools. Simultaneously analyzing 
patterns of intracellular gene and protein expressions and intercellular signaling protein during the early 
onset (incubation) of infection and its initial progression holds great promise for deciphering infectious 
disease causal relationships. The lack of computational tools limits our ability to describe the regulatory 
and mediator pathways and key interdependences that may explain the observed differences between 
pathogens.  

We hypothesize that our DBN methodology should 
substantially improve the statistical significance for 
inferring innate and inflammatory pathways from less 
experimental data while also confronting noisy, 
hidden, and/or missing data points.

Regulatory Pathway and Mechanistic 
DiscoveryOur modeling approach is complimented with a hypothesis driven host-pathogen time-course experimental design 

and methodology.  Our modeling/computational tools support time-course studies that are key to the deciphering of 
regulatory pathways and mechanisms.  We are developing new algorithms that allow us to apply automated 
Bayesian network structure learning based on prior pathway knowledge and the correlation of changes that occur 
between control groups, experimental groups of different genotypes (resistant vs. susceptible) and the measured 
change in gene/protein expression during disease progression (Figure 2). 
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Figure 2. Dynamic Bayesian Network Model (DBN) generated from time-course host-pathogen reponse studies 
allow the combination of control and experimental data with prior biological functional and pathway knowledge to 
infer  the causal differences between the groups. Further, our DBN can link genomic response to physiologic 
response, all in a single model.

Table 1: Evaluation of DBN Modeling Correctness
DBN

Models
Training
Cases

Test
Cases

Model Correctness
p=.05

Salmonella 25 100 99%
Tularemia 25 100 99%
Glanders 25 100 75%
Smallpox 25 100 100%
Brucellosis 25 100 100%
Anthrax 25 100 100%
Lassa 25 100 85%
Plague 25 100 100%
West Nile 25 100 98%
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